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Stone’s Theorem

In this section we are going to use the functional calculus we devel-
oped in the Spectral Theorem theory to study operators of the form
U(t) = eitA where A is a self-adjoint operator. We start describing
some properties of these operators.

Theorem 1. Let A be a self-adjoint operator on a Hilbert spaceH and
let U(t) = eitA. Then

(i) U(t) is a unitary operator for all t ∈ R and U(t+ s) = U(t)U(s) for
all s, t ∈ R. Furthermore, {U(t)}t∈R forms an Abelian group under
composition of operators.

(ii) U(t)ϕ → U(t0)ϕ for all ϕ ∈ H as t → t0, i.e. t 7→ U(t) is a
continuous with respect to the strong operator topology.
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(iii)
U(t)ψ − ψ

t
→ iAψ for all ψ ∈ D(A) as t→ 0.

(iv) If lim
t→0

U(t)ψ − ψ
t

exists, then ψ ∈ D(A).

Proof.
(i). It follows directly for the functional calculus and the properties of
the complex value function ht(λ) = eitλ.

We shall write

U(t)∗U(t) = ΦA(ht)
∗ΦA(ht) = ΦA(ht)ΦA(ht) = ΦA(htht) = ΦA(1) = I.

Thus U(t) is unitary.
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In addition,

U(t)U(s) = ΦA(ht)ΦA(hs) = ΦA(ht · hs) = ΦA(ht+s) = U(t + s).

To show that U(t) form a group we notice that we already have proved
that it is closed under composition. The associativity and commutativ-
ity can be proved using the above procedure. We observe that U(−t)
is the inverse of U(t) and U(0) is the neutral element.

(ii). To prove this we first observe that it is enough to show that t 7→
U(t) is strongly continuous at t = 0.
It is convenient to use the projection-valued measure formulation.
Then

‖eitAϕ− ϕ‖2 =

∫
R
|eitλ − 1|2 d〈EA

λ ϕ, ϕ〉

since for any function h
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‖h(A)ϕ‖2 = 〈h(A)ϕ, h(A)ϕ〉 = 〈ϕ, h(A)∗h(A)ϕ〉
= 〈ϕ, h(A)h(A)ϕ〉 = 〈ϕ, (|h|2)(A)ϕ〉.

Since |eitλ− 1|2 is dominated by the integrable function g(λ) = 4, and
|eitλ − 1|2 → 0 pointwise for all λ as t→ 0, we have that

‖U(t)ϕ− ϕ‖2 → 0

by the Lebesgue dominated convergence theorem. Thus t 7→ U(t) is
continuous at t = 0.

(iii). We can employ a similar technique to prove (iii). We see that∥∥∥U(t)ψ − ψ
t

− iAψ
∥∥∥2 =

∫
R

∣∣∣eitλ − 1

t
− iλ

∣∣∣2 d〈EA
λ ψ, ψ〉
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On the other hand, we observe that

|eix − 1|2 = 4 sin2(
x

2
) ≤ x2.

Hence ∣∣∣eitλ − 1

t
− iλ

∣∣∣2 ≤ (∣∣∣λt
t

∣∣∣ + |λ|
)2

= (2λ)2

which is integrable because of∫
R
|2λ|2 d〈EA

λ ψ, ψ〉 = ‖2Aψ‖2 <∞

as ψ ∈ D(A). Since
∣∣∣eitλ−1

t
−iλ

∣∣∣2 → 0 pointwise for all λ ∈ R as t→ 0,
the Lebesgue dominated convergence theorem yields the result.
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(iv). We define

D(B) =
{
ψ : lim

t→0

U(t)ψ − ψ
t

exists
}

and let

iBψ = lim
t→0

U(t)ψ − ψ
t

.

Then it is easy to show that B is symmetric, i.e. B ⊆ B∗. From (iii)
we have that A ⊆ B. Since A is self-adjoint we have that A = B.
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Definition 1. Let {U(t)}t∈R be a family of unitary operators such that
U(t)U(s) = U(t + s) for all t, s ∈ R. If in addition it holds that
U(t)ϕ→ U(t0)ϕ for all ϕ ∈ H as t→ t0, we call {U(t)}t∈R a strongly
continuous (one-parameter) unitary group.

Remark 1. The Stone Theorem is essentially the converse of the The-
orem 1. Combining Theorem 1 and Stone’s Theorem it is established
a bijection between strongly continuous one-parameter unitary groups
and self-adjoint operators on a Hilbert space.
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Theorem 2 (Stone’s Theorem). Let {U(t)}t∈R be a strongly continu-
ous one-parameter unitary group on a Hilbert space H. Then there
exists a unique self-adjoint operator A on H such that U(t) = eitA.

Definition 2. If {U(t)}t∈R is a strongly continuous one-parameter uni-
tary group, then the self-adjoint operator A with U(t) = eitA is called
the infinitesimal generator of U(t).
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Proof. We observe from (iii) in Theorem 1 that A can be obtained by
differentiating U(t) at t = 0. We will see that this can done on a dense
subset of H consisting of suitable vectors. This will yield an operator
which we will show to be essentially self-adjoint by using the basic
criteria. We will see that U(t) is the exponential of the closure of this
operator.

First we consider f ∈ C∞0 (R). For each ϕ ∈ H we define

ϕf =

∫ ∞
−∞

f (t)U(t)ϕdt. (0.1)

This integral is Hilbert space-valued and defined as a Riemann inte-
gral, which is well-defined since U(t) is strongly continuous.
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Let D be the set of finite linear combinations of all such ϕf for ϕ ∈ H
and f ∈ C∞0 (R). We use the approximate identity φε(x) = 1

ε
φ(x

ε
)

where φ ∈ C∞(R) is a nonnegative function with support contained
in (−1, 1) and

∫∞
−∞ φ(x) dx = 1. Then the Minskowskii inequality in

Banach spaces and the properties of φε give us

‖ϕφε − ϕ‖ =
∥∥∥ ∫ ∞
−∞

φε(t)(U(t)ϕ− ϕ) dt
∥∥∥

≤
∫ ∞
−∞

φε(t) ‖U(t)ϕ− ϕ‖ dt

≤
∫ ∞
−∞

φε(t) dt sup
t∈[−ε,ε]

‖U(t)ϕ− ϕ‖

= sup
t∈[−ε,ε]

‖U(t)ϕ− ϕ‖.

(0.2)

We conclude that D is dense in H since letting ε tending to zero, we
have ϕφε → ϕ because U(t) is strongly continuous.
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For a ϕf ∈ D(U(s)− I
s

)
ϕf =

(U(s)− I
s

) ∫ ∞
−∞

f (t)U(t)ϕdt

=

∫ ∞
−∞

f (t)
(U(s + t)− U(t)

s

)
ϕdt

=

∫ ∞
−∞

f (t)
(U(s + t)

s

)
ϕdt−

∫ ∞
−∞

f (t)
(U(t)

s

)
ϕdt

=

∫ ∞
−∞

f (t− s)
(U(t)

s

)
ϕdt−

∫ ∞
−∞

f (t)
(U(t)

s

)
ϕdt

=

∫ ∞
−∞

f (t− s)− f (t)

s
U(t)ϕdt.
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If we let s→ 0 the last term converges to

−
∫ ∞
−∞

f ′(t)U(t)ϕdt = ϕ−f ′

since
f (t− s)− f (t)

s
converges uniformy to −f ′(t) as s→ 0.

Now we can define the operator Ã on D by Ãϕf = −iϕ−f ′. By defini-
tion Ã : D → D. Observe that U(t) : D → D. Indeed,

U(s)ϕf = U(s)

∫ ∞
−∞

f (t)U(t)ϕdt =

∫ ∞
−∞

f (t)U(s + t)ϕdt

=

∫ ∞
−∞

g(t)U(t)ϕdt = ϕg

where g(t) = f (t− s). Moreover U(t)Ãϕf = ÃU(t)ϕf for ϕf ∈ D,
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ÃU(s)ϕf = Ãϕg = −iϕ−g′ = −iU(s)ϕ−f ′ = U(s)Ãϕf , (0.3)

where we again use g(t) = f (t − s). The identity (0.3) tells us that
differentiation and translation commute.

Next we show that Ã is symmetric. We write

〈Ãϕf , ϕg〉 = lim
s→0

〈(U(s)− I
is

)
ϕf , ϕg

〉
= lim

s→0

〈
ϕf ,

(I − U(−s)
is

)
ϕg
〉

= 〈ϕf ,−iϕ−g′〉 = 〈ϕf , Ãϕg〉.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Using the basic criteria we proceed to prove that Ã is essentially self-
adjoint. Suppose there is a ψ ∈ D(Ã∗) such that Ã∗ψ = iψ. Then for
each ϕ ∈ D(Ã) = D we have

d

dt
〈U(t)ϕ, ψ〉 = lim

s→0

〈(U(t + s)− U(t)

s

)
ϕ, ψ

〉
= lim

s→0

〈(U(s)− I
s

)
U(t)ϕ, ψ

〉
= 〈iÃU(t)ϕ, ψ〉 = i〈U(t)ϕ, Ã∗ψ〉
= i〈U(t)ϕ, iψ〉 = 〈U(t)ϕ, ψ〉.
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Hence the complex value function f (t) = 〈U(t)ϕ, ψ〉 satisfies the or-
dinary differential equation f ′ = f , demanding an exponential solution
f (t) = f (0) et. On the other hand, U(t) is unitary and thus has norm
1.

Thus f (t) has to be bounded for positive and negative t, which is only
possible if f (0) = 0 = 〈ϕ, ψ〉.
Since D is dense inH and ϕ was chosen arbitrarily, we conclude that
ψ = 0.

Similarly, we conclude that the equation Ã∗ψ = −iψ has no nonzero
solutions. Then by the basic criteria for essentially self-adjointness
it follows that Ã is essentially self-adjoint on D, that is, A = Ã is
self-adjoint.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

We then define V (t) = eitA and prove that U(t) and V (t) coincide on
D. Let ϕ ∈ D. Since ϕ ∈ D(A), V (t)ϕ ∈ D(A) and

V ′(t)ϕ = iAV (t)ϕ

by (iii) in Theorem 1.

We already know that U(t)ϕ ∈ D ⊆ D(A) for all t ∈ R. If we set

w(t) = U(t)ϕ− V (t)ϕ,

then w(t) is a differentiable Hilbert space-valued function, since U(t)
is strongly differentiable by assumption and V (t) because of Theorem
1. We obtain

w′(t) = iÃU(t)ϕ− iAV (t)ϕ = iAw(t).
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Hence,

d

dt
‖w(t)‖2 = −i〈Aw(t), w(t)〉 + i〈w(t), Aw(t)〉 = 0

which implies that w(t) = 0 for all t ∈ R since w(0) = 0 by definition.

This means that U(t)ϕ = V (t)ϕ for all t ∈ R. Thus we have found A
to be the infinitesimal generator of U(t).

Finally, we prove the uniqueness. Suppose that there exists a self-
adjoint operator B such that eitB = U(t) = eitA. Then by (iii) in Theo-
rem 1 A = B.
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Applications

In this part we will discuss some applications of the Stone Theorem.

Definition 3. For ϕ ∈ L2(R) we define the translation operator by

(U(a)ϕ)(x) = ϕ(x + a).

i.e. U(a) shifts the function ϕ(x) to the left by a.

From the definition we can see that U(a) is an isometry since the
Lebesgue integral is translation-invariant and since translations are
invertible, we have a unitary map for all a ∈ R. Since

(U(a)U(b)ϕ)(x) = (U(b)ϕ)(x + a) = ϕ(x + a + b) = (U(a + b)ϕ)(x)

we can conclude that {U(a)}a∈R forms a one-parameter group.
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The goal of the next exercises is proving that the translation operator
group is also strongly continuous and thus we have a strongly contin-
uous one-parameter unitary group.

Exercise 3. Let X be a Banach space and let T ⊂ B(X) be
bounded, i.e. sup

T∈T
‖T‖ = c <∞. Then in T are equivalent:

(i) strong convergence,

(ii) strong convergence on a dense subspace M of X .

Exercise 4. The translation group on Lp(Rn) (1 ≤ p <∞) is strongly
continuous, i.e. if we define

(τ−→a f )(−→x ) = f (−→x +−→a ),

then
lim
|−→a |→0

τ−→a f = f

in Lp(Rn) for all f ∈ Lp(Rn).
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Now we have that the translation forms a strongly continuous one-
parameter unitary group. By Stone’s Theorem there exists a self-
adjoint infinitesimal generator A, such that U(t) = eitA. From The-
orem 1 (iii) and (iv) we know that D(A) is given by all functions in
ψ ∈ L2(R) with

lim
t→0

U(t)ψ − ψ
t

= lim
t→0

ψ(· + t)− ψ(·)
t

exists,

and therefore

Aψ = −i lim
t→0

U(t)ψ − ψ
t

.
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If ψ were a differentiable function the pointwise limit above will give us
the product of −i times the derivative. However, we have to consider
the limit in L2. Then we need to prove that there exists a function
ϕ ∈ L2(R) so that

lim
t→0

∥∥∥U(t)ψ − ψ
t

− ϕ
∥∥∥2 = lim

t→0

∫
R

∣∣∣ψ(s + t)− ψ(s)

t
− ϕ(s)

∣∣∣2 ds = 0.

To prove this we use weak derivatives, that is, if lim
t→0

U(t)ψ − ψ
t

= ϕ

exists, then 〈ϕ, η〉 = −〈ϕ, η′〉, for all η ∈ C∞0 (R). Indeed,
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Let η ∈ C∞0 (R),

〈ϕ, η〉 =
〈

lim
t→0

U(t)ψ − ψ
t

, η
〉

= lim
t→0

〈U(t)ψ − ψ
t

, η
〉

= lim
t→0

〈
ψ,
U(−t)η − η

t

〉
=
〈
ψ, lim

t→0

U(−t)η − η
t

〉
= −

〈
ψ, lim

t→0

U(t)η − η
t

〉
= −〈ϕ, η′〉

where η′ is usual derivative of η (as a pointwise limit). It is clear that
η′ is also the L2-limit of lim

t→0

U(t)ψ−ψ
t

as t→ 0 (exercise).
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In conclusion we have that the domain of A can be formally written as

D(A) =
{
ψ ∈ L2(R) : lim

t→0

U(t)ψ − ψ
t

exists and is in L2(R)
}

Setting D(D) = D(A) we define the operator D as the map taking a
function in its weak derivative. By Theorem 1

A = −iD,

and thus
U(t) = etD,

which formally written as a power series corresponds to Taylor’s the-
orem.
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Exercise 5. Consider the linear initial value problem{
∂tu(x, t) = i∆u(x, t), x ∈ Rn, t ∈ R,
u(x, 0) = u0(x).

(0.4)

(i) Show that solutions of (0.4) form a strongly continuous one-
parameter unitary group in L2(Rn).

(ii) Prove that the infinitesimal generator operator A in (0.4) is the
Laplacian ∆ with D(A) = H2(Rn).
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Example 1. Let X = L2(R) and Y = Hs(R) with s ≥ 3. We define
the operator A0 by D(A0) = H3(R) and A0u = D3u for u ∈ D(A0)

where D =
d

dx
.

A0 is the infinitesimal generator of a C0 group of isometries on X .

To see this we prove that A0 is a skew-adjoint operator, i.e. iA0 is
self-adjoint or equivalently (A0u, u) = 0 for all u ∈ D(A0). This follows
easily from

(A0u, u) =

∫
D3u · u dx = −

∫
u ·D3u dx = −(A0u, u)

where we have integrated by parts three times. From Stone’s theorem
it follows that A0 is the infinitesimal generator of a unitary group on
X = L2(R).
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