Stone's Theorem

In this section we are going to use the functional calculus we developed in the Spectral Theorem theory to study operators of the form $U(t)=e^{i t A}$ where A is a self-adjoint operator. We start describing some properties of these operators.

Theorem 1. Let A be a self-adjoint operator on a Hilbert space \mathcal{H} and let $U(t)=e^{i t A}$. Then
(i) $U(t)$ is a unitary operator for all $t \in \mathbb{R}$ and $U(t+s)=U(t) U(s)$ for all $s, t \in \mathbb{R}$. Furthermore, $\{U(t)\}_{t \in \mathbb{R}}$ forms an Abelian group under composition of operators.
(ii) $U(t) \varphi \rightarrow U\left(t_{0}\right) \varphi$ for all $\varphi \in \mathcal{H}$ as $t \rightarrow t_{0}$, i.e. $t \mapsto U(t)$ is a continuous with respect to the strong operator topology.
(iii) $\frac{U(t) \psi-\psi}{t} \rightarrow i A \psi$ for all $\psi \in D(A)$ as $t \rightarrow 0$.
(iv) If $\lim _{t \rightarrow 0} \frac{U(t) \psi-\psi}{t}$ exists, then $\psi \in D(A)$.

Proof.

(i). It follows directly for the functional calculus and the properties of the complex value function $h_{t}(\lambda)=e^{i t \lambda}$.

We shall write
$U(t)^{*} U(t)=\Phi_{A}\left(h_{t}\right)^{*} \Phi_{A}\left(h_{t}\right)=\Phi_{A}\left(\overline{h_{t}}\right) \Phi_{A}\left(h_{t}\right)=\Phi_{A}\left(\overline{h_{t}} h_{t}\right)=\Phi_{A}(1)=I$.
Thus $U(t)$ is unitary.

In addition,

$$
U(t) U(s)=\Phi_{A}\left(h_{t}\right) \Phi_{A}\left(h_{s}\right)=\Phi_{A}\left(h_{t} \cdot h_{s}\right)=\Phi_{A}\left(h_{t+s}\right)=U(t+s) .
$$

To show that $U(t)$ form a group we notice that we already have proved that it is closed under composition. The associativity and commutativity can be proved using the above procedure. We observe that $U(-t)$ is the inverse of $U(t)$ and $U(0)$ is the neutral element.
(ii). To prove this we first observe that it is enough to show that $t \mapsto$ $U(t)$ is strongly continuous at $t=0$.
It is convenient to use the projection-valued measure formulation. Then

$$
\left\|e^{i t A} \varphi-\varphi\right\|^{2}=\int_{\mathbb{R}}\left|e^{i t \lambda}-1\right|^{2} d\left\langle E_{\lambda}^{A} \varphi, \varphi\right\rangle
$$

since for any function h

$$
\begin{aligned}
&\|h(A) \varphi\|^{2}=\langle h(A) \varphi, h(A) \varphi\rangle \\
&=\left\langle\varphi, h(A)^{*} h(A) \varphi\right\rangle \\
&=\langle\varphi, \overline{h(A)} h(A) \varphi\rangle=\left\langle\varphi,\left(|h|^{2}\right)(A) \varphi\right\rangle .
\end{aligned}
$$

Since $\left|e^{i t \lambda}-1\right|^{2}$ is dominated by the integrable function $g(\lambda)=4$, and $\left|e^{i t \lambda}-1\right|^{2} \rightarrow 0$ pointwise for all λ as $t \rightarrow 0$, we have that

$$
\|U(t) \varphi-\varphi\|^{2} \rightarrow 0
$$

by the Lebesgue dominated convergence theorem. Thus $t \mapsto U(t)$ is continuous at $t=0$.
(iii). We can employ a similar technique to prove (iii). We see that

$$
\left\|\frac{U(t) \psi-\psi}{t}-i A \psi\right\|^{2}=\int_{\mathbb{R}}\left|\frac{e^{i t \lambda}-1}{t}-i \lambda\right|^{2} d\left\langle E_{\lambda}^{A} \psi, \psi\right\rangle
$$

On the other hand, we observe that

$$
\left|e^{i x}-1\right|^{2}=4 \sin ^{2}\left(\frac{x}{2}\right) \leq x^{2}
$$

Hence

$$
\left|\frac{e^{i t \lambda}-1}{t}-i \lambda\right|^{2} \leq\left(\left|\frac{\lambda t}{t}\right|+|\lambda|\right)^{2}=(2 \lambda)^{2}
$$

which is integrable because of

$$
\int_{\mathbb{R}}|2 \lambda|^{2} d\left\langle E_{\lambda}^{A} \psi, \psi\right\rangle=\|2 A \psi\|^{2}<\infty
$$

as $\psi \in D(A)$. Since $\left|\frac{e^{i t \lambda}-1}{t}-i \lambda\right|^{2} \rightarrow 0$ pointwise for all $\lambda \in \mathbb{R}$ as $t \rightarrow 0$, the Lebesgue dominated convergence theorem yields the result.
(iv). We define

$$
D(B)=\left\{\psi: \lim _{t \rightarrow 0} \frac{U(t) \psi-\psi}{t} \text { exists }\right\}
$$

and let

$$
i B \psi=\lim _{t \rightarrow 0} \frac{U(t) \psi-\psi}{t} .
$$

Then it is easy to show that B is symmetric, i.e. $B \subseteq B^{*}$. From (iii) we have that $A \subseteq B$. Since A is self-adjoint we have that $A=B$.

Definition 1. Let $\{U(t)\}_{t \in \mathbb{R}}$ be a family of unitary operators such that $U(t) U(s)=U(t+s)$ for all $t, s \in \mathbb{R}$. If in addition it holds that $U(t) \varphi \rightarrow U\left(t_{0}\right) \varphi$ for all $\varphi \in \mathcal{H}$ as $t \rightarrow t_{0}$, we call $\{U(t)\}_{t \in \mathbb{R}}$ a strongly continuous (one-parameter) unitary group.

Remark 1. The Stone Theorem is essentially the converse of the Theorem 1. Combining Theorem 1 and Stone's Theorem it is established a bijection between strongly continuous one-parameter unitary groups and self-adjoint operators on a Hilbert space.

Theorem 2 (Stone's Theorem). Let $\{U(t)\}_{t \in \mathbb{R}}$ be a strongly continuous one-parameter unitary group on a Hilbert space \mathcal{H}. Then there exists a unique self-adjoint operator A on \mathcal{H} such that $U(t)=e^{i t A}$.

Definition 2. If $\{U(t)\}_{t \in \mathbb{R}}$ is a strongly continuous one-parameter unitary group, then the self-adjoint operator A with $U(t)=e^{i t A}$ is called the infinitesimal generator of $U(t)$.

Proof. We observe from (iii) in Theorem 1 that A can be obtained by differentiating $U(t)$ at $t=0$. We will see that this can done on a dense subset of \mathcal{H} consisting of suitable vectors. This will yield an operator which we will show to be essentially self-adjoint by using the basic criteria. We will see that $U(t)$ is the exponential of the closure of this operator.

First we consider $f \in C_{0}^{\infty}(\mathbb{R})$. For each $\varphi \in \mathcal{H}$ we define

$$
\begin{equation*}
\varphi_{f}=\int_{-\infty}^{\infty} f(t) U(t) \varphi d t \tag{0.1}
\end{equation*}
$$

This integral is Hilbert space-valued and defined as a Riemann integral, which is well-defined since $U(t)$ is strongly continuous.

Let D be the set of finite linear combinations of all such φ_{f} for $\varphi \in \mathcal{H}$ and $f \in C_{0}^{\infty}(\mathbb{R})$. We use the approximate identity $\phi_{\epsilon}(x)=\frac{1}{\epsilon} \phi\left(\frac{x}{\epsilon}\right)$ where $\phi \in C^{\infty}(\mathbb{R})$ is a nonnegative function with support contained in $(-1,1)$ and $\int_{-\infty}^{\infty} \phi(x) d x=1$. Then the Minskowskii inequality in Banach spaces and the properties of ϕ_{ϵ} give us

$$
\begin{align*}
\left\|\varphi_{\phi_{\epsilon}}-\varphi\right\| & =\left\|\int_{-\infty}^{\infty} \phi_{\epsilon}(t)(U(t) \varphi-\varphi) d t\right\| \\
& \leq \int_{-\infty}^{\infty} \phi_{\epsilon}(t)\|U(t) \varphi-\varphi\| d t \\
& \leq \int_{-\infty}^{\infty} \phi_{\epsilon}(t) d t \sup _{t \in[-\epsilon, \epsilon]}\|U(t) \varphi-\varphi\| \tag{0.2}\\
& =\sup _{t \in[-\epsilon, \epsilon]}\|U(t) \varphi-\varphi\| .
\end{align*}
$$

We conclude that D is dense in \mathcal{H} since letting ϵ tending to zero, we have $\varphi_{\phi_{\epsilon}} \rightarrow \varphi$ because $U(t)$ is strongly continuous.

For a $\varphi_{f} \in D$

$$
\begin{aligned}
\left(\frac{U(s)-I}{s}\right) \varphi_{f} & =\left(\frac{U(s)-I}{s}\right) \int_{-\infty}^{\infty} f(t) U(t) \varphi d t \\
& =\int_{-\infty}^{\infty} f(t)\left(\frac{U(s+t)-U(t)}{s}\right) \varphi d t \\
& =\int_{-\infty}^{\infty} f(t)\left(\frac{U(s+t)}{s}\right) \varphi d t-\int_{-\infty}^{\infty} f(t)\left(\frac{U(t)}{s}\right) \varphi d t \\
& =\int_{-\infty}^{\infty} f(t-s)\left(\frac{U(t)}{s}\right) \varphi d t-\int_{-\infty}^{\infty} f(t)\left(\frac{U(t)}{s}\right) \varphi d t \\
& =\int_{-\infty}^{\infty} \frac{f(t-s)-f(t)}{s} U(t) \varphi d t .
\end{aligned}
$$

If we let $s \rightarrow 0$ the last term converges to

$$
-\int_{-\infty}^{\infty} f^{\prime}(t) U(t) \varphi d t=\varphi_{-f^{\prime}}
$$

since $\frac{f(t-s)-f(t)}{s}$ converges uniformy to $-f^{\prime}(t)$ as $s \rightarrow 0$. Now we can define the operator \widetilde{A} on D by $\widetilde{A} \varphi_{f}=-i \varphi_{-f^{\prime}}$. By definition $\widetilde{A}: D \rightarrow D$. Observe that $U(t): D \rightarrow D$. Indeed,

$$
\begin{aligned}
U(s) \varphi_{f} & =U(s) \int_{-\infty}^{\infty} f(t) U(t) \varphi d t=\int_{-\infty}^{\infty} f(t) U(s+t) \varphi d t \\
& =\int_{-\infty}^{\infty} g(t) U(t) \varphi d t=\varphi_{g}
\end{aligned}
$$

where $g(t)=f(t-s)$. Moreover $U(t) \widetilde{A} \varphi_{f}=\widetilde{A} U(t) \varphi_{f}$ for $\varphi_{f} \in D$,

$$
\begin{equation*}
\widetilde{A} U(s) \varphi_{f}=\widetilde{A} \varphi_{g}=-i \varphi_{-g^{\prime}}=-i U(s) \varphi_{-f^{\prime}}=U(s) \widetilde{A} \varphi_{f} \tag{0.3}
\end{equation*}
$$

where we again use $g(t)=f(t-s)$. The identity (0.3) tells us that differentiation and translation commute.

Next we show that \widetilde{A} is symmetric. We write

$$
\begin{aligned}
\left\langle\widetilde{A} \varphi_{f}, \varphi_{g}\right\rangle & =\lim _{s \rightarrow 0}\left\langle\left(\frac{U(s)-I}{i s}\right) \varphi_{f}, \varphi_{g}\right\rangle=\lim _{s \rightarrow 0}\left\langle\varphi_{f},\left(\frac{I-U(-s)}{i s}\right) \varphi_{g}\right\rangle \\
& =\left\langle\varphi_{f},-i \varphi_{-g^{\prime}}\right\rangle=\left\langle\varphi_{f}, \widetilde{A} \varphi_{g}\right\rangle .
\end{aligned}
$$

Using the basic criteria we proceed to prove that \widetilde{A} is essentially selfadjoint. Suppose there is a $\psi \in D\left(\widetilde{A^{*}}\right)$ such that $\widetilde{A}^{*} \psi=i \psi$. Then for each $\varphi \in D(\widetilde{A})=D$ we have

$$
\begin{aligned}
\frac{d}{d t}\langle U(t) \varphi, \psi\rangle & =\lim _{s \rightarrow 0}\left\langle\left(\frac{U(t+s)-U(t)}{s}\right) \varphi, \psi\right\rangle \\
& =\lim _{s \rightarrow 0}\left\langle\left(\frac{U(s)-I}{s}\right) U(t) \varphi, \psi\right\rangle \\
& =\langle i \widetilde{A} U(t) \varphi, \psi\rangle=i\left\langle U(t) \varphi, \widetilde{A}^{*} \psi\right\rangle \\
& =i\langle U(t) \varphi, i \psi\rangle=\langle U(t) \varphi, \psi\rangle
\end{aligned}
$$

Hence the complex value function $f(t)=\langle U(t) \varphi, \psi\rangle$ satisfies the ordinary differential equation $f^{\prime}=f$, demanding an exponential solution $f(t)=f(0) e^{t}$. On the other hand, $U(t)$ is unitary and thus has norm 1.

Thus $f(t)$ has to be bounded for positive and negative t, which is only possible if $f(0)=0=\langle\varphi, \psi\rangle$.
Since D is dense in \mathcal{H} and φ was chosen arbitrarily, we conclude that $\psi=0$.
Similarly, we conclude that the equation $\widetilde{A}^{*} \psi=-i \psi$ has no nonzero solutions. Then by the basic criteria for essentially self-adjointness it follows that \widetilde{A} is essentially self-adjoint on D, that is, $A=\overline{\widetilde{A}}$ is self-adjoint.

We then define $V(t)=e^{i t A}$ and prove that $U(t)$ and $V(t)$ coincide on D. Let $\varphi \in D$. Since $\varphi \in D(A), V(t) \varphi \in D(A)$ and

$$
V^{\prime}(t) \varphi=i A V(t) \varphi
$$

by (iii) in Theorem 1.
We already know that $U(t) \varphi \in D \subseteq D(A)$ for all $t \in \mathbb{R}$. If we set

$$
w(t)=U(t) \varphi-V(t) \varphi
$$

then $w(t)$ is a differentiable Hilbert space-valued function, since $U(t)$ is strongly differentiable by assumption and $V(t)$ because of Theorem

1. We obtain

$$
w^{\prime}(t)=i \widetilde{A} U(t) \varphi-i A V(t) \varphi=i A w(t)
$$

Hence,

$$
\frac{d}{d t}\|w(t)\|^{2}=-i\langle A w(t), w(t)\rangle+i\langle w(t), A w(t)\rangle=0
$$

which implies that $w(t)=0$ for all $t \in \mathbb{R}$ since $w(0)=0$ by definition.
This means that $U(t) \varphi=V(t) \varphi$ for all $t \in \mathbb{R}$. Thus we have found A to be the infinitesimal generator of $U(t)$.

Finally, we prove the uniqueness. Suppose that there exists a selfadjoint operator B such that $e^{i t B}=U(t)=e^{i t A}$. Then by (iii) in Theorem $1 A=B$.

Applications

In this part we will discuss some applications of the Stone Theorem. Definition 3. For $\varphi \in L^{2}(\mathbb{R})$ we define the translation operator by

$$
(U(a) \varphi)(x)=\varphi(x+a) .
$$

i.e. $U(a)$ shifts the function $\varphi(x)$ to the left by a.

From the definition we can see that $U(a)$ is an isometry since the Lebesgue integral is translation-invariant and since translations are invertible, we have a unitary map for all $a \in \mathbb{R}$. Since

$$
(U(a) U(b) \varphi)(x)=(U(b) \varphi)(x+a)=\varphi(x+a+b)=(U(a+b) \varphi)(x)
$$

we can conclude that $\{U(a)\}_{a \in \mathbb{R}}$ forms a one-parameter group.

The goal of the next exercises is proving that the translation operator group is also strongly continuous and thus we have a strongly continuous one-parameter unitary group.
Exercise 3. Let X be a Banach space and let $\mathcal{T} \subset \mathcal{B}(X)$ be bounded, i.e. $\sup _{T \in \mathcal{T}}\|T\|=c<\infty$. Then in \mathcal{T} are equivalent:
(i) strong convergence,
(ii) strong convergence on a dense subspace M of X.

Exercise 4. The translation group on $L^{p}\left(\mathbb{R}^{n}\right)(1 \leq p<\infty)$ is strongly continuous, i.e. if we define

$$
\left(\tau_{\vec{a}} f\right)(\vec{x})=f(\vec{x}+\vec{a})
$$

then

$$
\lim _{|\vec{a}| \rightarrow 0} \tau_{\vec{a}} f=f
$$

in $L^{p}\left(\mathbb{R}^{n}\right)$ for all $f \in L^{p}\left(\mathbb{R}^{n}\right)$.

Now we have that the translation forms a strongly continuous oneparameter unitary group. By Stone's Theorem there exists a selfadjoint infinitesimal generator A, such that $U(t)=e^{i t A}$. From Theorem 1 (iii) and (iv) we know that $D(A)$ is given by all functions in $\psi \in L^{2}(\mathbb{R})$ with

$$
\lim _{t \rightarrow 0} \frac{U(t) \psi-\psi}{t}=\lim _{t \rightarrow 0} \frac{\psi(\cdot+t)-\psi(\cdot)}{t} \text { exists, }
$$

and therefore

$$
A \psi=-i \lim _{t \rightarrow 0} \frac{U(t) \psi-\psi}{t}
$$

If ψ were a differentiable function the pointwise limit above will give us the product of $-i$ times the derivative. However, we have to consider the limit in L^{2}. Then we need to prove that there exists a function $\varphi \in L^{2}(\mathbb{R})$ so that

$$
\lim _{t \rightarrow 0}\left\|\frac{U(t) \psi-\psi}{t}-\varphi\right\|^{2}=\lim _{t \rightarrow 0} \int_{\mathbb{R}}\left|\frac{\psi(s+t)-\psi(s)}{t}-\varphi(s)\right|^{2} d s=0
$$

To prove this we use weak derivatives, that is, if $\lim _{t \rightarrow 0} \frac{U(t) \psi-\psi}{t}=\varphi$ exists, then $\langle\varphi, \eta\rangle=-\left\langle\varphi, \eta^{\prime}\right\rangle$, for all $\eta \in C_{0}^{\infty}(\mathbb{R})$. Indeed,

Let $\eta \in C_{0}^{\infty}(\mathbb{R})$,

$$
\begin{aligned}
\langle\varphi, \eta\rangle & =\left\langle\lim _{t \rightarrow 0} \frac{U(t) \psi-\psi}{t}, \eta\right\rangle=\lim _{t \rightarrow 0}\left\langle\frac{U(t) \psi-\psi}{t}, \eta\right\rangle \\
& =\lim _{t \rightarrow 0}\left\langle\psi, \frac{U(-t) \eta-\eta}{t}\right\rangle=\left\langle\psi, \lim _{t \rightarrow 0} \frac{U(-t) \eta-\eta}{t}\right\rangle \\
& =-\left\langle\psi, \lim _{t \rightarrow 0} \frac{U(t) \eta-\eta}{t}\right\rangle=-\left\langle\varphi, \eta^{\prime}\right\rangle
\end{aligned}
$$

where η^{\prime} is usual derivative of η (as a pointwise limit). It is clear that η^{\prime} is also the L^{2}-limit of $\lim _{t \rightarrow 0} \frac{U(t) \psi-\psi}{t}$ as $t \rightarrow 0$ (exercise).

In conclusion we have that the domain of A can be formally written as

$$
D(A)=\left\{\psi \in L^{2}(\mathbb{R}): \lim _{t \rightarrow 0} \frac{U(t) \psi-\psi}{t} \text { exists and is in } L^{2}(\mathbb{R})\right\}
$$

Setting $D(D)=D(A)$ we define the operator D as the map taking a function in its weak derivative. By Theorem 1

$$
A=-i D
$$

and thus

$$
U(t)=e^{t D}
$$

which formally written as a power series corresponds to Taylor's theorem.

Exercise 5. Consider the linear initial value problem

$$
\left\{\begin{array}{l}
\partial_{t} u(x, t)=i \Delta u(x, t), \quad x \in \mathbb{R}^{n}, t \in \mathbb{R} \tag{0.4}\\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

(i) Show that solutions of (0.4) form a strongly continuous oneparameter unitary group in $L^{2}\left(\mathbb{R}^{n}\right)$.
(ii) Prove that the infinitesimal generator operator A in (0.4) is the Laplacian Δ with $D(A)=H^{2}\left(\mathbb{R}^{n}\right)$.

Example 1. Let $X=L^{2}(\mathbb{R})$ and $Y=H^{s}(\mathbb{R})$ with $s \geq 3$. We define the operator A_{0} by $D\left(A_{0}\right)=H^{3}(\mathbb{R})$ and $A_{0} u=D^{3} u$ for $u \in D\left(A_{0}\right)$ where $D=\frac{d}{d x}$.
A_{0} is the infinitesimal generator of a C_{0} group of isometries on X.
To see this we prove that A_{0} is a skew-adjoint operator, i.e. $i A_{0}$ is self-adjoint or equivalently $\left(A_{0} u, u\right)=0$ for all $u \in D\left(A_{0}\right)$. This follows easily from

$$
\left(A_{0} u, u\right)=\int D^{3} u \cdot u d x=-\int u \cdot D^{3} u d x=-\left(A_{0} u, u\right)
$$

where we have integrated by parts three times. From Stone's theorem it follows that A_{0} is the infinitesimal generator of a unitary group on $X=L^{2}(\mathbb{R})$.

References

[1] S. Möller, Stone's Theorem and Applications, http://www.maths.lth.se/media11/thesis/2010/MATX01.pdf.
[2] M. Reed and B. Simon. Methods of Modern Mathematical Physics, volume 1: Functional Analysis. Academic Press, 1972.

